Interferometer Design for Synthesis Imaging

David Mozurkewich

11 August 1999

Strategies for Imaging Complex Sources
Array Design for Synthesis Imaging
Beam Combination and Modulation for Synthesis Imaging
The Next Generation of for Synthesis Imaging Arrays

Strategies for Imaging

Example Visibility Functions

Statement of the problem

Implications for the Interferometer Fringe Detection Array Layout

UD and LD Stars

Projected Baseline

LD star with and without Spot

General Properties of Interesting Sources at Visible Wavelengths.

Most Power is at Low spatial frequencies.

Most Interest is at Higher spatial frequencies.

The baselines that contain interesting information also contain very low signal to noise.

But the atmosphere forces us to fringe track which implies we need a specified SNR in a specified integration time

The Hard Choice

Either

Record Useful Data

Or

Look at Interesting Sources

I know 5 Alternatives

Alternative 1: Integrate Forever

Some interferometers do not fringe track so why not integrate long enough to get a useful signal to noise ratio?

Fringe Amplitude Signal to Noise

$$\sqrt{NV^2}$$
 High Signal NV^2 Low Signal

But it is worse. Since the fringe position cannot be known in advance, we either

1. Use narrower bandpass and throw away more light

or

2 SCAN OVER LOTS OF DELAT AND ADD EXTER NOISE

Alternative 2:

Observe Only Those Sources with High Visibility on Long Baselines

AND

Assert with Great Confidence and Fanfare that These are Indeed Interesting Sources!

Binary Star System

Binary Star System

Star with a Disk

Alternative 3: Wavelength Bootstraping

Track the Fringe at a Long Wavelength while Observing at a Short Wavelength.

This is the Most Widespread Technique used to Date.

Pro

An Interferometer with a Wide Bandpass is a Good Thing.

Con

It is Difficult to Get More Than a Couple Factors of 2 in Baseline Length. This Limits the Maximum resolution to a few Pixels Across the Source.

Alternative 4: Baseline Bootstraping

Use Redundant Arrays:

Make a Long Baseline out of Several Short Baselines.

Observe on ALL Baselines at Once.

Squared Visibilty

Alternative 5: Guide Star Methods

Observe Two Objects in the same FOV.

Track Fringes on Guide Star.

Passively Observe on Target Star.

pros:

Potentially Very Powerful in the Thermal Infrared. Should Produce Some Interesting Science in the Near IR.

cons:

Requires Large Telescopes

Amount of Phase Noise on Target Star is a Strong Function of Seeing and Angle Between Target and Guide.

The FOV is Too Small to be Useful at Visible WAVELENGMY WIM NAMED GUIL STARS

Optimal Design of Interferometric Arrays

Tremendous Amount of Work at Radio Wavelengths

Random Arrays
Cornwell Circles
Reuleaux Triangles
Non-redundant Y (VLA)

Probably none if it is Applicable at Visible Wavelengths

Optimal Usually Means Most Uniform (u,v) Coverage (but see recent work at MIT)

Optical Interferometric Array Layout for Imaging

Imaging Requires Redundant Arrays. for Baseline Bootstrapping

Optical Interferometry Requires Vacuum Feed System. for Control of Instrumental Seeing

A Partially Redundant Y Seems to be the Only Reasonable Choice

Polarization and Beam Rotation Effects

The Rule of Optics Requires us to be Careful with the Symmetry of the Reflections on Each Arm of the Interferometer.

Beam Rotation: E-vectors Must Line Up

Polarization Dependent Phase Shift: Important Even if There is no Net Induced Linear Polarization

Mirrors Act like Waveplates.

Beam Combination and Modulation

After Combining the Light, we Need to Know
If a Fringe is Present
Its Amplitude and Phase

The Type of Detection Technique Depends on the Type Beam Combination Technique.

Fringe Detection Schemes

Beam Combination Strategies

Pupil plane: Passive detection

$$\frac{<(A-B)^2>}{<(A+B)^2>}$$

Very Simple

Minimum Number of Detectors

Not Useful with Multiple Baselines

No Phase Information Retained.

Image plane: Spatial Modulation

All Aperture Masking, I2T, GI2T

Stuff beams through a single lens Diffraction pattern of lens gives fringes.

Pupil plane: Time modulation

Modulate Path Length Rapidly Relative to Atmosphere.

Detect Photons Synchronously with the Modulation.

How do we deal with Multiple Baselines?

What is the Best way to Combine Light from Multiple Telescopes?

Measure Data Three Baselines (one Triangle) at a Time.

Pair-wise Combination
One Detector For Each Baseline

All-on-one Combination

Each Detector Sees Light from All Telescopes

Somewhere in Between

Partial-Pairwise Combination
Some Light for Fringe Tracking, the Rest for Science

DEMODULATING MULTIPLE BASECINES

EACH TELESCOPE DELAT IS MODULATED WITH A DIFFERENT AMPLITUDE TRIANGLE TSCOPE AMP 8.6 Amp TIME FRINGE FREQUENCY f = BASECINE AMPLITUS (2) MODULATION TIME CD

THE SIGNAL IS A SUPERPOSITION OF SINES

FOURIZA TRANSFORM TURE SERIES

READ OFF AMPLITUDE PHASE AT EACH FRINGE FREQUENCY.

BIAS

INCORRECT STROKE BIASES THE FRINGE AMPLITURE
AND PHASE.

F.T. SIGNAG IS SINC FUNCTION, NOT DELTA FUNCTION

F.T.

INCORRECT STROKE LENGTH RESULTS IN SAMPLING OFF THE PEAK.

ATMOSPHER SHIFTS FRINGE FREQUENCY

8f = 2mte

PHASE BIAS AVERAGES TO ZERO IF PHASE IS RANDOM

CROSSTALK

IF FRINCE FREQUENCIES ARE INTEGRAL MULTIPLES,

EACH SIGNAL IS AT A ZERO OF ALL OTHER FREQUENCIES.

- NO CRUSSTALK

THE ATMOSPHERE CHANGES FRINGE FREQUENCIES

- CROSSTALK LINEAR IN SF

MODULATION FREQUENCY MUST BE INCREASED BY ORDER OF MAGNITUDE OVER SWELL BASELWE CASE.

ALTERNATIUE

- · SPREAD OUT FRINGE FREQUENCIES
 - LUNGER STROKE
 - MORE SAMPLES
 - · A POOIZE TU REDUCE SIDE LOBES
 - LUSS & SNR

E. v.

Comparision of Beam Combination Techniques

Pairwise combination

$$N = > \frac{N_0 E}{E(E-1)/2}$$

 $V = > V_0$ $NV^2 = (2N_0)V_0^2(\frac{1}{E-1})$

All-on-One Combination

$$N => EN_0$$

 $V => V_0(\frac{2}{E})$ $NV^2 = (2N_0)V_0^2(\frac{2}{E})$

NPOI: 6-way Hybrid

$$N => 2N_0$$

 $V => V_0/2$ $NV^2 = (2N_0)V_0^2(\frac{1}{4})$

CHARA: Partial-pairwise

$$N => 2fN_0$$

 $V => V_0$ $NV^2 = (2N_0)V_0^2(\frac{f}{2})$

Read noise plays a role at the faint end

The Next Generation of Arrays for Synthesis Imaging Arrays.

WHAT SHOULD WE, AS A COMMUNITY SUGGEST TO THE DECADE COMMUNITY

What not to Do

Build Another NPOI
 Small Number of Small Telescopes

Not Sensitive Enough

2. Build Another KI/VLTI
Small Number of Very Large Telescopes

These are NOT Imaging Systems

So What do we Do?

Requirements

Very Long Baselines

Note: Shorter Wavelengths Require Longer Baselines!

Flux Limited System Implies Hotter Objects Observed at Shorter Wavelengths

Increased Surface Brightness wins over Increased Resolution.

Most Interesting Sources are too Faint for Current Instruments.

Implications

Baseline

5 kilometers – 10 pixels across $m_V = 4$ O Star

Clear Aperture

1 to 2 meters with Low Order AO – to reach $m_V = 10$

Spatial Filtering with SMF at the Telescope To Allow Calibration of Data

As Many Telescopes as Budget Allows
For Baseline Bootstrap, not Speed or Sensitivity

Bandpass – V to K